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1. Introduction

Viruses package their genetic material (DNA or RNA) inside 
a protein shell: the capsid. Capsids have remarkable materials 
properties. Some can withstand internal osmotic pressures as 
high as tens of atmospheres [1] and large mechanical deforma-
tions without rupture [2] while others are able to function in 
extreme physical environments such as high salinity, acidity 
and temperature [3]. These features make viral capsids of 
interest for materials science applications (in particular when 
combined with the intrinsic programmability of viruses [4]). 
The structural basis of viral capsids that makes them so robust 
is normally assumed to derive from the fact that capsid pro-
teins self-assemble into shells composed of an interlocked 
array of proteins. These positionally-ordered capsids are most 
frequently either cylindrically shaped helical assemblies or 
spherically shaped icosahedral structures, where the symmetry 
of the icosahedral capsids are classified according to their tri-
angulation numbers as described by Caspar and Klug (CK) [5].

Forty years ago molecular phylogenetics recognized 
Archaea as a separate domain or kingdom of life [6]. In 
conjunction with bacteria and the nucleated eukaryotes, this 
resulted in three major branches, or domains in the universal 
tree of life; the Archaea, the Bacteria and the Eucarya [7]. 
While Archaea are like bacteria in size and shape, their tran-
scriptional and translational machinery is closer to that of plant 
and animal cells (eukaryotes), and they may utilize metabolic 
pathways such as methanogenesis that are unique to certain 
archaea (methanogens). Further, while Archaea are abundant 
in soils, oceans and the mammalian GI tract, they are also 
the dominant organisms in extreme habitats, with halophiles 
found in hypersaline lakes, acidophiles that thrive in highly 
acidic springs and acid mine drainage, alkaliphiles in basic 
environments, and hyperthemophiles that thrive at or near the 
boiling point of water. For those living at high temper atures, 
the membrane lipids and membranes are also unlike those of 
either bacteria or eukaryotes [8].

Like Eucarya and Bacteria, the Archaea are also subject to 
infection by viruses. The study of archaeal viruses is a young 
field and fewer than 100 viruses have been studied in any detail 
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[3]. However, this work has already given rise to 17 new viral 
families [3]. For historical reasons, these viruses are largely 
associated with either the thermophilic crenarchaeota or the 
halophilic euryarchaeota, although viruses infecting additional 
phyla are abundant and begging for attention [9]. Initial studies 
suggested euryarchaeal viruses are typical head-and-tail phages, 
though recent studies suggest this is an oversimplification [10]. 
In contrast, viruses infecting Crenarchaea frequently exhibit 
remarkably unusual and diverse morphotypes, rather than the 
more common icosahedral or cylindrically shaped morpholo-
gies [3, 11]. In particular, three viral families (Fuselloviridae, 
Bicaudaviridae, Salterprovirus) are characterized by spindle-
shaped (lemon-shaped) capsids [3, 12]. In terms of physical 
virology this presents us with a fundamental challenge: these 
capsids cannot be a positionally-ordered protein shells because 
the spindle shape necessitates the introduction of a large number 
of five-fold and seven-fold topological defects [13].

One of the best examples of spindle-shaped capsid morph-
ology is Acidianus two-tailed virus (ATV) [14, 15] shown 
in figure 1. As it exits an infected cell, the ATV capsid ini-
tially appears as a tailless lemon-shaped particle. However, 
over time it grows extended, cylindrical tails at each end of 
the central, spindle-shaped capsid [14]. This shape change 
may be driven by the polymerization of a central protein fila-
ment that runs the length of the capsid. The two protruding 
tails are believed to play a role in establishing contact with 
potential host cells [14], as is the case with more typical bac-
terial viruses (phage). Importantly, as the tails elongate over 
time, the volume of the capsid decreases to approximately half 
its initial volume, yet the overall surface area of the particle 
remains roughly constant [14]. This suggests the major struc-
tural protein(s) in the tails are the same as those in the lemon-
shaped capsid. Further, this morphological change occurs at 
75 °C and above; tailless lemon-shaped ATV stored at lower 
temperatures do not show this morphological transition.

It is well known that the deformation of a positionally-
ordered layer of particles which involves a change in the 
Gauss curvature of the layer requires the introduction of topo-
logical defects in the particle array including disclinations, 
dislocations, and strings of dislocations [16]. In a previous 
publication [13], we investigated the possibility that these 

lemon-shaped archaeal capsids have an intrinsic distribution 
of mobile topological defects. A layer of material with mobile 
topological defects would be solid-like on short time scales 
and liquid-like on long time scales, i.e. it would be visco-
elastic [17].

Figure 2 shows the results of a simulation of the effects of 
pulling out two points located on opposite sides of a shell in 
the liquid state that is stretched due to a pressure difference 
between the interior and exterior. The shell has non-zero sur-
face bending modulus κ and a fixed surface area A = 4πR2. 
The enclosed volume was not fixed however. The pulling force 
represents the force exerted by the polymerization of the cen-
tral filament [18]. At a critical point (close to B), two tethers 
are suddenly pulled out. The radius of the two tethers depends 
on the bending modulus. The reason for the sudden appear-
ance of the tethers is explained in figure 3 and [19].

Figure 2 compares rather well with figure 1 for the shape 
change of the ATV capsid. This would support the notion 
that the ATV capsid is in a liquid state. It is easy to obtain an 
approximate analytical expression for the shape of the shell. 
The contribution from the bending energy is important only 
in the regions of the shell that are connected to the tethers. If 
we can neglect the bending energy then the free energy of a 
stretched fluid shell with volume V , surface area S, and max-
imum spanning distance L expressed as Fl = −ΠV + γS − τL  
with Π the pressure difference between the interior and exte-
rior, γ the surface tension, and τ the stretching force. When 
this expression is minimized with respect to the shape of the 
shell, one finds that the condition of mechanical equilibrium 
imposes the Laplace Law Π = 2γH , with H the mean cur-
vature of the shell. It follows that the equilibrium shape of 
a liquid shell enclosing a volume with uniform pressure has 

Figure 1. Cryo-electron micrographs of the conformational change 
of ATV and its reconstruction. Reprinted by permission from 
Macmillan Publishers Ltd: Nature Reviews Microbiology [14], 
Copyright 2006.

Figure 2. Simulation of the shape of a tense shell in the liquid 
state with a non-zero bending energy that is progressively stretched 
between two points on opposite sides of the shell. Pulling force 
increases from top to bottom. Note the reduction in volume. The 
surface area was kept fixed.
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to be that of a surface of constant mean curvature. The only 
surface of constant mean curvature that resembles the ATV 
capsid is the unduloid, a surface of revolution generated by the 
rotation of a catenary around an axis [21]. The central part of 
the computed shell shape indeed agrees reasonably with that 
of an unduloid.

We performed in [13] a finite temperature Monte-Carlo 
simulation of interacting particles located on the surface of an 
unduloid. The simulation revealed (i) that the negative Gauss 
curvature of an unduloid covered by a particle array automati-
cally generates a plethora of dislocations, disclinations, and 
strings of dislocations and (ii) that these topological defects 
remain mobile at temperatures well below the nominal melting 
temperature of the particle array. The same numerical simula-
tions revealed however that isotropic viscoelastic shells may 
have serious defects in terms of their function as capsids. 
Unlike a positionally ordered layer of particles, a viscoelastic 
layer may not be able to resist the formation of bulges. In the 
simulations, we observed significant variations in the local ten-
sion around the structural defects. As will be discussed in more 
detail later, variations in the tension across the surface of a pres-
sure vessel can lead to the growth of bulges, as happens during 
the formation of aneurysms on blood vessels. In this context, 
it should be noted that it is not known if the osmotic pressure 
inside ATV capsids is as high as that of bacterial viruses (phage) 
[1], although an internal pressure of 10 ATM has been shown 
for His1, a salterprovirus with a lemon-shaped capsid [22].

Recently, crystallographic and cryo-EM studies of 
Acidianus tailed spindle-shaped virus (ATSV), a second 

member of the large tailed spindle virus superfamily, suggest 
that the major coat protein assembles as a multistart helix that 
runs through the tail and then extends into the spindle-shaped 
capsid [20]. Importantly, the side-by-side or intrastrand inter-
actions between capsid protein subunits within a helix or spiral 
appear significantly stronger than the inter-strand interactions 
between spirals. In this paper it is proposed that the capsids of 
ATV and ATSV are anisotropic visco-elastic materials, spe-
cifically smectic liquid crystals, driven by the polymerization 
of capsid proteins into spirals. In section 2 we present a model 
free energy for capsids in the smectic state, based on a chiral 
version of the Landau–Brazovskii Hamiltonian. In section 3, 
we show an ATV-like capsid in the smectic state can undergo 
large-scale shape changes without a prohibitive energy pen-
alty while in section 4 we examine the resistance of such vesi-
cles against bulge formation.

2. Chiral smectics on a curved surface

2.1. Free energy of a chiral smectic capsid

The free energy of a capsid in the smectic liquid crystal 
state will be assumed to be the sum of the free energy Fl of 
the capsid in the liquid state, as discussed in section 1, plus 
a contrib ution ∆F associated with the formation of chiral 
smectic order. The latter is given by

∆Fsm =
1
2

∫
da

(∣∣(∆ + k2
0)Ψ

∣∣2 + r|Ψ|2 + u|Ψ|4
)

+ χ

∫
da∇Ψ · C · (∇Ψ∗ × n̂).

 

(2.1)

The first part of ∆F, which we will denote by FLB, is the 
Landau–Brazovskii Hamiltonian (LB) for a complex order 
parameter Ψ = A exp iφ with amplitude A and phase func-

tion φ. The coefficient of the term 
∣∣(∆ + k2

0)Ψ
∣∣2 was set equal 

to one by choosing suitable units for the order parameter 
amplitude. As a consequence, A2 has dimensions of energy 
times area. To see the connection between smectics and the 
LB Hamiltonian, it is useful to express the order parameter in 
terms of the phase and amplitude variables:

FLB =
1
2

∫
da
([

A(k2
0 − |∇φ|2) + ∆A

]2

+
[
A∆φ+ 2∇A · ∇φ

]2
+
[
rA2 + uA4

])
.

 

(2.2)

For negative r and positive u and for a flat surface, FLB is mini-
mized by a density wave of the form Ψ0(�r) = A0 exp(ik0n̂.�r) 
with wavevector k0n̂ and amplitude A0 =

√
−r/2u  where n̂ 

is an arbitrary unit vector in the plane. The real part of Ψ0(�r) 
can be viewed as a smectic density modulation with amplitude 
A0. Since A0 goes to zero at r  =  0, this point would mark the 
(mean-field) onset of smectic ordering.

If the amplitude is assumed constant while the phase is 
allowed to vary at will, then FLB reduces to

FLB =
1
2

A2
0

∫
da

( [
k2

0 − |∇φ|2
]2

+ (∆φ)2
)

 
(2.3)

Figure 3. Force-extension curve for the shell of figure 2. Vertical 
axis: distance ∆x is the between the two pulling points minus 
diameter 2R of the undeformed shell, where 4πR2 is the fixed 
surface area measured in units of R. Horizontal axis: pulling force in 
units of the bending modulus κ divided by R. The points marked A, 
B, and C correspond to the three shapes of figure 2. A mechanically 
unstable section is indicated by a dashed red line. Dashed black 
arrows indicate a hysteresis loop. For a typical spindle shaped virus 
[20] R  =  100 nm, Π = 10 atm, radius of tail is r  =  4 nm from which 
we estimate κ = r2ΠR ≈ 400kBT  [19]. For this choice, the unit of 
force is 16 pN and the unit of displacement is 100 nm.
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where we dropped a constant term that can be absorbed into Fl. 
As shown in figure 4, a phase function φ(x, y) = k0(y − u(x, y)) 
describes a deformed density wave along the y-direction with 
the smectic stripes displaced over a distance u(x, y) along the 
y-direction.

The LB free energy expressed in terms of u(x, y) is

FLB =
1
2

∫
da
(

B
[
∂u/∂y +

1
2
(∇u)2

]2

+ K(∆u)2
)

.
 

(2.4)

This is the Grinstein–Pelcovits (PE) expression for the defor-
mation energy of a 2D smectic liquid crystal [23]. It is the sum 
of a stripe compression energy and a stripe bending energy 
term. The compression modulus is B = 4A2

0k4
0 and the stripe 

bending modulus is K = A2
0k2

0. Note that both moduli go to 
zero at the onset of smectic ordering.

Yet another way to write FLB is to express the phase gra-
dient as ∇φ = k0n̂(�r) where n̂(�r) now is a position-dependent 
unit vector normal to the lines of constant phase:

FLB =
1
2

∫
da
(
(1/4)B

[
1 − (|∇φ|/k0)

2]2

+ K(∇.n̂)2
)

.
 

(2.5)

The divergence ∇.n̂, which is similar to the splay term for 
nematic liquid crystals, represents the energy cost of bending 
the lines of constant phase. This version is useful when con-
sidering smectics on curved surfaces. The first term of equa-
tion (2.5) is minimized by |∇φ| = k0. For a curved surface, this 
equation has the mathematical form of the eikonal equation for 
the rays of geometrical optics, as noted in [24]. The smectic 
stripes behave here like the wavefronts of a monochromatic 
wave that travels along the curved surface according to geo-
metrical optics. This term is minimized if the smectic stripes 
are geodesics of the curved surface, i.e. lines of shortest dis-
tance between two points measured along the surface. For a 
curved surface, the term (∆φ)2 introduces coupling between 

the smectic order parameter and the Gauss curvature of the 
surface. Note that the Δ operator is to be interpreted as the 
Laplace–Beltrami operator on curved surfaces, which only is 
affected by the Gauss curvature of a surface.

The LB Hamiltonian is not the most general free energy 
for a 2D smectic because it does not include coupling between 
the mean or extrinsic curvature H of the surface and the order 
parameter Ψ. This is not a very serious concern in the present 
context because our focus is on the resistance against bulge 
formation, which is due to coupling between the Gauss or 
intrinsic curvature and the smectic order parameter6, as will 
be discussed further in section 3.

The second term of equation (2.1) will be denoted by FHP. 
Since capsid proteins are chiral, capsids should be represented 
as chiral surfaces. FHP is the Helfrich–Prost (HP) free energy 
for chiral layers [26]:

FHP = χ

∫
da [∇Ψ · C · (∇Ψ∗ × ρ̂)].

 
(2.6)

The two-by-two matrix C is the curvature tensor of the surface 
and ρ̂ is the outward normal unit vector to the surface. Note 
that the integrand is a pseudo-scalar, i.e. it is odd under inver-
sion. If one takes the amplitude A again to be a constant then 
the HP term simplifies to

FHP = χK
∫

da [n̂ · C · t̂] (2.7)

where t̂ = n̂ × ρ̂ is a unit vector tangent to the stripes. The 
strength χ of the chirality has, in our units, dimensions of an 
inverse length.

As an example of how the HP term works, consider a 
cyindrical surface of radius a. The minimum energy state of 
the LB Hamiltonian is one where the smectic stripes form a 
collection of equidistant spirals separated by the wavelength 
λ = 2π/k0 of the density wave. If there are M separate spi-
rals on the cylinder then the pitch angle ψ of the stripes with 
respect to the cylinder axis is geometrically related to the 
number M of spirals by M = (k0a) sinψ . We can now eval-
uate the HP term. The curvature tensor C of a cylinder in polar 
coordinates has only a single nonzero entry, equal to 1/a. It 
follows that the HP term equals −χ(k0A0)

2(1/a) sin 2ψ per 
unit area. This is minimized by setting ψ = ±π/4, depending 
on the sign of the ξ. The number of independent spirals is then 
M = (k0a)/

√
2. Because a cylinder has zero Gauss curvature, 

the LB Hamiltonian does not contribute to the determination 
of the pitch angle of the spiraling smectic stripes on a cylinder.

3. Smectic unduloids

Recall that the capsid has the shape of an unduloid if the 
smectic order parameter is zero. A logical step is thus the com-
putation of ∆Fsm  for an unduloid surface. We will assume an 
unduloid with smallest diameter 2a and largest diameter 2c, 
as shown in figure 5. In this limit, The constant mean curva-
ture equals H = 1/(a + c) so the Laplace Law takes the form 

Figure 4. Crests of a deformed density wave. The undeformed 
density wave is directed along the y-direction and has a wavelength 
λ. The maxima of the wave are lines along the x-direction with 
y = iλ, where i = 0, 1, 2, 3, .. is an integer. In the deformed state, 
the maxima are displaced by u(x, y) along the y-direction.

6 The LB Hamiltonian version was applied earlier in [25] to describe layers 
of diblock copolymers on curved surfaces.
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Π = 2γ/(a + c). We will assume that the unduloid is matched 
to cylindrical tails with fixed diameter 2a so the ratio c/a is the 
only free parameter that determines the shape.

Introduce a polar coordinate system with the z-axis along 
the center-line of the unduloid. The unduloid surface can be 
defined in terms of the parametric curvilinear coordinates u 
and ϕ through

r(u,ϕ) = [ρ(u) cosϕ, ρ(u) sinϕ, z(u)]

u ∈ [0, 2π], ϕ ∈ [0, 2π]
 

(3.1)

where,

z(u) = aF(
u
2
− π

2
|k2) + cE(

u
2
− π

2
|k2),

and where

ρ(u) =
√

n − m cos u.

Here, F and E are incomplete elliptic integrals with 
modulus k2 = (c2 − a2)/c2. Next, m = (c2 − a2)/2 and 
n = (c2 + a2)/2.

In these coordinates, the eikonal equation |∇φ|2 = k2
0 takes 

the form

4
(a + c)2 φ

2
u +

1
ρ2 φ

2
ϕ − k2

0 = 0. (3.2)

Look for a solution with separation of variables 
φ(u,ϕ) = f (u) + Mϕ where M is the number of separate 
smectic stripes covering the unduloid. The eikonal equa-
tion reduces to

4f 2
u

(a + c)2 +
M2

ρ2 − k2
0 = 0 (3.3)

or

f 2
u = (a + c)2 (k

2
0ρ(u)

2 − M2)

4ρ(u)2 . (3.4)

Using this equation, f (u) can be expressed in the form of int-
egral for given ρ(u). It can be shown that equation (3.4) for the 
lines of constant phase of the eikonal solution defines a set of 
M equidistant (or Archimedean) spirals. An example is shown 
in figure 6 for M  =  8.

To obtain an idea of the positioning of capsid proteins in 
the smectic state on an unduloid surface, we can populate 
these concentric spirals with small spheres representing the 

capsid proteins (see also [13]). Figure  7—borrowed from 
[13]—shows the result of the application of the Voronoi con-
struction to the particle positions.

One can identify dislocations in the form of pentamer–
heptamer pairs and grain boundaries in the form of strings of 
pentamer–heptamer pairs. Note that that the grain boundaries 
emerge from the two necks in the form of spirals. The spirals 
can have either chirality, with only one of the two isomers 
shown in figure 7. If the HP term would be included, then this 
chiral degeneracy would be broken. Note that for this state to 
represent a visco-elastic smectic, thermal fluctuations need to 
be sufficiently strong to allow the protein spirals to slide past 
each other.

3.1. Cooperative shape changes

We now can compute ∆Fsm = FLB + FHP for a chiral smectic 
unduloid. We start with FLB.

Assuming the eikonal solution, FLB reduces for an undu-

loid to a pure bending energy Fb = 1
2 K

∫
da [∇ · n̂e]

2 (the 
subscript e indicates the eikonal state). The bending energy 
has the scaling form Fb/K = gb(a/c), where gb(x) is a dimen-
sionless scaling function that can be determined numerically 
once the initial slope fu(u  =  0) for the eikonal equation and the 
number M of independent spirals are specified. To that pur-
pose, we will impose the requirement that the smectic state on 
the unduloid is matched, at u  =  0 and u = 2π, to two cylin-
drical smectic surfaces with radius a that representat the tails. 
The unduloid and cylindrical surfaces must have the same 
number M of spirals. This number M is geometrically related 
to the pitch angle ψ of the spirals by M = (k0a) sinψ , which 
has to be valid in particular at the matching points. It then 
follows from equation  (3.4) that fu(0) = 1

2 k0(a + c) sinψ. 
The only remaining free parameter is the pitch angle ψ for the 
spirals. The pitch angle must be determined by minimizing 
the total free energy (i.e. the sum ∆F of the chiral energies of 
the cylinders and the unduloid plus the bending energy of the 
unduloid (the bending energy of the cylinders is zero).

Figure 5. Unduloid. The smallest diameter is 2a, the largest 
diameter is 2c. The ATV shell corresponds to the limit a � c.

Figure 6. Solution of the eikonal equation on an unduloid covered 
by M  =  8 with an initial pitch angle ψ = π/2. Shown are lines 
of constant phase. One of them is highlighted in red for clarity. 
Reprinted figure with permission from [13], Copyright 2016 by the 
American Physical Society.
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The chiral energy FHP(ψ) of the unduloid can be shown to 
have the form

FHP(ψ) = ∓ (2πχa2c sinψ)

×
∫ 2π

0

√
ρ(u)2 − a2 sin2 ψ

ρ(u)3 du.
 

(3.5)

In figure 8 we plot FHP(ψ) as a function of ψ. For c/a  =  1, 
the unduloid reduces to a cylinder when the chiral energy is 

proportional to sin 2ψ with a minimum at π/4 for positive χ 
(or −π/4 for negative χ). If c/a is larger than one then the 
minimum of FHP is between π/4 and π/2, approaching π/2 
for large c/a. FHP has a discontinuity at ψ = π/2. Both spiral 
states at ψ = π/2 circle around the necks of the unduloid but 
with opposite chirality while the pitch angle is either larger or 
smaller than π/2. The chiral energies of these two states have 
opposite sign. For positive χ, the optimal pitch angle of the 
unduloid lies between π/2 and π/4.

Figure 7. Voronoi construction for an array of spherical particles that populate the eight equidistant spirals of figure 6. Cells with five edges 
are colored blue (pentamers), cells with six edges grey (hexamers), and cells with seven edges red (heptamers). (a) Side view showing 
isolated dislocations; (b) Front view showing eight spiral dislocations strings; (c) Front view overlaid with spirals. Reprinted figure with 
permission from [13], Copyright 2016 by the American Physical Society.

Figure 8. Chiral energy FHP/K  as a function of the initial pitch ψ for different values of c/a. The dimensionless strength χ(a/K) of the 
chiral interaction was equal to 1/2π.

J. Phys.: Condens. Matter 30 (2018) 204004
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We can now compute the sum ∆Fsm  of the chiral and 
bending energies of the unduloid as a function of the ratio c/a. 
The result is shown in figure 9 for different values of the initial 
pitch angle ψ. The value of the pitch angle is determined by 
minimization of the total free energy (i.e. unduloid plus tails). 
First consider the case that the cylindrical tails are so long that 
their surface area is large compared to that of the unduloid. The 
minimization of the total energy is then dominated by the tails, 
which imposes the value ψ = π/4 for positive χ. The plot of 
∆Fsm  for ψ = π/4 shows that it is a smoothly varying function 
of c/a. In the opposite case of very short tails, it is the unduloid 
that determines the value of ψ. Now, the optimal value for ψ is 
between π/2 and π/4 depending on the c/a ratio (see figure 8). 
For large c/a the optimal pitch angle is π/2. In that regime, 
∆Fsm  remains a smoothly function of c/a. As c/a is reduced, 
the optimal pitch angle slowly shifts from π/2 to π/4. In that 
regime ∆Fsm  again is only weakly dependent on c/a.

In summary, the smectic free energy ∆Fsm  is a (very) 
smooth function of c/a. We can conclude that an unduloid-
shaped capsid in the smectic state can undergo a large coop-
erative shape change that does involve a change in Gauss 
curvature without incurring a large free energy penalty.

3.2. Validity of the eikonal solution

The eikonal solution is not the minimum free energy state and 
the conclusion of the last subsection could be questioned on 
that basis. To investigate deviations from the eikonal solution, 
perform a perturbation expansion φ = φe + δφ where φe is 
the solution of the eikonal equation (with ∇φe = k0n̂e) (note 
that it is a priori not clear what the small expansion parameter 
is of this perturbation theory).

Leaving out for now the chiral term, the change in free 
energy δF  produced by δφ is

δF =

∫
daA2

0

(
k0 [∇ · n̂] ∆δφ+ 2k2

0 [n̂ · ∇δφ]
2

+
1
2
(∆δφ)2

)
.

 

(3.6)

There is one first-order term in δφ and two second-order terms. 
Let R be the local scale of variation of the eikonal solution φe, 
which is of the order of c except near the ends of the unduloid 
where it is of the order of a. We will assume R to be large com-
pared to the‘microscopic’ length scale 2π/k0 of the problem, 
which is the case if M � 1. The first-order term in δF  then 
scales as (k0/R3)δφ, while the two second-order terms scale as 
(k2

0/R2)δφ2, respectively, (1/R4)δφ2. Since k0R � 1, we need 
retain only the first of the two second order terms. The Euler–
Lagrange equation for the minimization of the sum of the first 
order term and the first second order term has the formal solu-
tion n̂e · ∇δφ = (1/4k0)(n̂e · ∇)−1∆∇ · n̂e. Power-counting 
shows that δφ is of the order of δφ ∼ 1/(k0R). We can neglect 
this term under the stated assumption that k0R � 1.

A similar calculation shows that the expansion parameter 
associated with the chiral term is χ/k0. That is, the character-
istic length scale introduced by chirality should be large com-
pared to the microscopic length. In short, the eikonal solution 
remains valid provided the wavelength 2π/k0 is small com-
pared to all other length-scales of the problem (here, a, c, and 
1/χ).

4. Bulge formation

We found that the free energy of a smectic unduloid is a smooth 
function of the aspect ratio of the unduloid, which means that 
smectic ordering does not suppress global shape changes. 
We now turn to the question whether smectic ordering can 
suppress aneurysm-type instabilities. We first briefly review 
the physics of bulge formation for a tense liquid shell under 
pressure.

Assume a uniform spherical solid shell of radius R with 
a pressure difference P between the interior and exterior of 
the shell. The tension γ0 in the shell is related to the pres-
sure difference P between the interior and exterior by the 
Laplace Law P = 2γ0/R for mechanical equilibrium. Now 
assume that the elastic properties of the shell are not uni-
form, so the wall tension depends on position. The Laplace 
Law for mechanical equilibrium remains valid but reduces 

Figure 9. Smectic free energy ∆Fsm/K as a function of c/a for different values of the pitch-angle ψ. The dimensionless strength χ(a/K) of 
the chiral interaction was equal to 1/2π as in the previous figure.
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to the local relation P = 2γ(s)H(s) where γ(s) is the tension 
and where H(s) is the curvature at location s. If the tension 
variation is small, one can expand γ(s) = γ0 + δγ(s) and 
H(s) = 1/R + 1

2∆ζ(s) with ζ(s) the radial outward displace-
ment and with Δ the Laplace–Beltrami operator. Linearizing 
the Laplace Law gives

γ0∆ζ(s) � 2δγ(s)/R. (4.1)

Equation (4.1) has the form of the Poisson equation  with 
2(δγ(s)/γ0)/R playing the role of the effective ‘charge den-
sity’ . If there is a localized reduction in tension, then the 
resulting displacement is an outward bulge that decays log-
arithmically away from the region of the tension deficit. If 
the increased elastic strain of the surface in the center of the 
bulge causes additional weakening of the tension—through 
anharmonic elastic effects—then this can lead to catastrophic 
failure. Here, we will restrict ourselves to the question 
whether smectic order is able to suppress the initial bulge 
formation as described by equation  (4.1) for the case of a 
uniform liquid.

The energy variation associated with bulge formation has 
the form

δEl =

∫
da
(1

2
γ0(�ζ)

2 + 2δγ(ζ/R)
)

. (4.2)

Minimization of δEl reproduces equation (4.1). In general, if 
the surface tension is reduced by an amount δγ0 over a region 
of size ξ then δEl = c1γ0ζ

2
0 − c2|δγ|(ζ0/R)ξ2 with ζ0 the 

height of the bulge, δγ  the mean reduction of the tension, and 
c1,2 numerical constants of the order of one.

4.1. Eikonal solution

We now will solve the eikonal solution |∇φ|2 = k2
0 for a bulge 

centered at the origin of a flat plane. Assume a localized ver-
tical displacement ζ of the surface that depends only on the 

distance ρ from the origin. The eikonal equation in polar coor-
dinates is:

(1 + ζ2
ρ)

−1φ2
ρ + ρ−2φ2

θ − k2
0 = 0. (4.3)

This first-order differential equation can be solved using the 
method of characteristics. The result is

dφ±

dρ
= ±k0

√
(1 + ζ2

ρ)(ρ
2 − a2)

ρ
 (4.4a)

dθ±

dρ
= ±a

√
(1 + ζ2

ρ)

ρ
√
ρ2 − a2

. (4.4b)

Here, θ(ρ) is the polar angle measured from the origin and a 
a free parameter. For given a, this pair of equations defines a 
characteristic curve in the x  −  y plane that is a ‘flow-line’ of 
the director field of the smectic. For given polar angle θ, the 
distance of the characteristic from the origin must be obtained 
by inverting θ(ρ). The characteristics for a bulge with a 
Gaussian shape are shown in figure 10. For large positive x, 
where the smectic is undeformed, the characteristics are lines 
parallel to the x axis. When they approach the bulge they bend 
towards the x-axis, somewhat like the rays of a wave front dif-
fracted by a lens. For negative x, the characteristics are again 
straight lines but rotated with respect to the ‘incident’ wave. 
The parameter a is the distance of closest approach of a char-
acteristic to the origin. The ‘minus’ solution of equation (4.4b) 
will apply to the characteristics of the incoming wave and the 
plus solution to the characteristics of the refracted wave. The 
plus and minus solutions for a characteristic must be matched 
at the point where ρ = a. The locus of matching points for dif-
ferent characteristic is indicated by a dashed line in figure 10. 
The refracted characteristics coming from opposite sides 
of the bulge intersect along the negative x-axis. In the lan-
guage of geometric optics, the locus of intersection points of 

Figure 10. Characteristics (or rays) of the eikonal equation for a plane with a Gaussian bulge of size ξ. The smectic wave comes in from 
the right where the characteristics are parallel to the horizontal axis. Characteristics are indexed by their distance a from the horizontal axis 
at plus infinity. Near the bulge, the characteristics refract. The shortest distance of the characteristic to the center of the bulge equals a. At 
that point the ‘minus’ solution for the characteristics defined by equation (4.4b) must be matched to a ‘plus’ characteristic. The locus of 
points of nearest approach are indicated by a dashed line. Blue: minus characteristics. Red: plus characteristics. A caustic extends along the 
negative x-axis starting from the center of the bulge (heavy red line).
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characteristics are known as a caustic (shown as a heavy red 
line in figure 10).

Explicit expressions for the characteristics can be obtained 
by perturbing around the uniform state. In perturbation theory, 
a characteristic with parameter a can be shown to terminate 
along the caustic at the point x = −�(a) defined by

a2

ξ2 = ln


 ζ2

0
√
π�(a)

2ξ3
(

1 +
ζ2

0
4ξ2 e−�(a)2/ξ2

)

 . (4.5)

For �(a) large compared to ξ, this can be appoximated by

a2

ξ2 � ln

(√
πζ2

0�(a)
2ξ3

)
. (4.6)

Note that �(a) has a lower bound �(a = 0) defined by the con-
dition that the argument of the logarithm equals one. This is 

the case if �(a = 0) = 2ξ3
√
πζ2

0
.

4.2. Bulge bending energy

For a given solution of the eikonal equa-

tion, the bending energy of the bulge has the form 
Fb = 1

2 A2
0

∫
da∆φ2 = 1

2 K
∫

da [∇ · n̂e]
2. In terms of the char-

acteristics, the bending energy can be expressed as the sum of 
plus and minus terms:

1
2

A2

(∫ ∞

−∞
da

∫ a

∞
dρ(∆φ−)2ρ

√
1 + ζ2

ρ|θa|
︸ ︷︷ ︸

plus

+

∫ ∞

−∞
da

∫ �(a)

a
dρ(∆φ+)2ρ

√
1 + ζ2

ρ|θa|
︸ ︷︷ ︸

minus

) 

(4.7)

where �(a) must be found from the solution of the equation

θ+(�, a) = π. (4.8)

We evaluated the bending energy for the case of a Gaussian 

bulge ζ(ρ) = ζ0e−ρ2/(2ξ2). The bending energy has the gen-
eral form Fb/K = g+

b (ζ0/ξ) + g−b (ζ0/ξ) with g±
b (x) separate 

dimensionless scaling functions for the plus and minus solu-
tions. The (numerically computed) scaling function g+

b (x) for 
the plus solution is shown in figure 11. The figure shows that 
g+

b (x) ∝ x2 for small x = ζ0/ξ. Explicitly, the plus bending 
energy has the form

Fb(+) � 1.55K(ζ0/ξ)
2. (4.9)

In the same manner, the minus bending energy is found to 
have the form

Fb(−) � 0.035K(ζ0/ξ)
4. (4.10)

The minus bending is always small compared to the plus 
bending energy.

To understand these results, one can use again perturbation 
theory. Assume that the phase degree of freedom has the form 
φ(x, y) = k · (x, y) + k0u(x, y), with u(x, y) the displacement 
of the stripes along the wavevector direction and with k = n̂k0 
where n̂ is a unit vector along the direction of the unperturbed 
plane wave. Expanding the LB free energy to lowest order in 
both ζ(x, y) and u(x, y) gives

FLB � 1
2

∫ {
B
[
n̂ · ∇u − 1

2
(n̂ · ∇ζ)2

]2

+ K
[
∆u − n̂TC∇ζ

]2}
dxdy + ....

 
(4.11)

Here,

C =

(
ζyy −ζxy

−ζxy ζxx

)
 (4.12)

is the curvature tensor of the surface. Demand that u(x, y) is a 
solution of the eikonal solution, which means setting the first 
term of FLB to zero so n̂ · ∇u = 1

2 (n̂ · ∇ζ)2. Power counting 
shows that for a bulge ζ(ρ) = ζ0e−ρ2/(2ξ2) the displacement 
scales as u ∼ ζ2

0/ξ since ξ is the only lateral length scale of the 

Figure 11. Scaling function g+
b (x) for the plus solution as a function of the ratio of the bulge height ζ0 and the bulge width ξ on a log–log 

scale. The straight line has a slope 2.0.
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problem that can appear in derivatives. Insert this estimate in 

the bending energy area density K[∆u − n̂TC∇ζ
]2

. If the first 

term inside the square brackets dominates, then the bending 
energy should be of the order of Kξ2(ζ2/ξ3)2 ∼ Kζ4/ξ4. If 
the second term dominates, then the bending energy should 
be of the order of Kξ2(ζ/ξ2)2 ∼ Kζ2/ξ2. These two limiting 
cases neatly correspond to the plus and minus regimes.

4.3. Suture energy

The two eikonal solutions that meet along the negative x-axis 
along a caustic must be stitched together into a single con-
tinuous solution. The two incoming wavevectors have the 
same projection kx along the x direction but opposite projec-
tions  ±ky along the y-direction, with k2

x + k2
y = k2

0 where |kx| 
approaches k0 for large negative x.

In the region where the two solutions must be matched 
around y  =  0, we look for solutions of the form

φ(x, y) � kxx + f (y) (4.13)

where fy should equal ±ky far from the x-axis. Inserting this 
ansatz in the constant amplitude expression for FLB gives the 
following expression for the ‘suture energy’ Fs:

Fs � A2
0

∫ ∫ (
f 2
yy + [k2

y − f 2
y ]

2
)

dx dy (4.14)

where A = A0 =
√
−r/2u as before. Define, q ≡ fy . We need 

to minimize

Fs � A2
0

∫ ∫ (
q2

y + [k2
y − q2]2

)
dx dy (4.15)

with respect to q(y). The Euler–Lagrange equation

−qyy + 2(q2 − k2
y)q = 0 (4.16)

has the soliton-type solution

q(y) = ky tanh(kyy) (4.17)

which has the appropriate limiting behavior far from the x-
axis. After integration over y, the singular energy reduces to

Fs � (8/3)A2
0

∫ −∞

0
|ky|3 dx. (4.18)

For |ky(x)| we inserted the value ∂φ/∂y|y=0 obtained from the 
eikonal solution. The result of the numerical evaluation of this 
integral is shown in figure 12: since ξ is the characteristic vari-
ation scale for the bulge, equation (4.18) suggests the scaling 
form Fs = A2

0(k
3
0ξ)gs(ζ0/ξ). We found that if we plotted our 

results with Fs/(Kk0ξ) as the vertical axis and ζ0/ξ as the hori-
zontal axis then all our data indeed collapsed onto the single 
curve that is shown in figure 12. The scaling function gs(x) is, 
for small x proportional to x4 with

Fs/(Kk0ξ) � 0.65(ζ0/ξ)
4.

The key result here is that the scaling function is of the order 
of one when x is of the order of one. The characteristic energy 
scale of the suture energy is thus Kk0ξ. This must be compared 
with the characteristic energy scale K for the bending energy. 
For bulges with k0ξ large compared to one, the suture energy 
dominates over the bending energy.

4.4. Smectic capsids and bulge formation

We can now examine the formation of a Gaussian bulge on a 
smectic capsid. Add our earlier expression for the energy cost 
of the formation of a bulge on a liquid shell of width ξ to the 
sum of bending and suture energies:

δEB = γ0ζ
2
0 − |δγ|(ζ0/R)ξ2 + K(ζ0/ξ)

2

+ K(k0ξ)(ζ0/ξ)
4 

(4.19)

where δγ  is the typical reduction of the tension across the 
bulge. For clarity, we leave out the numerical prefactors. In 
the liquid state, where K  =  0, the bulge height minimizing 
δEB would be

Figure 12. Suture energy for the caustic on a log–log scale. Vertical axis: Dimensionless suture energy gs equal to Fs/(Kk0ξ). Horizontal 
axis: ratio of the bulge height ζ0 and the bulge width ξ. Straight line 0.65(ζ/ξ)4.
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ζ∗ ∼ (|δγ|/γ0)ξ
2/R.

The energy gain −γ0ζ
∗2 by the formation of the bulge—due 

to work by the pressure difference γ0/R—grows rapidly with 
the size ξ of the bulge. In order for the smectic order to sup-
press bulge formation, we must require that the bending and 
suture energy costs exceed the energy gain. This is the case if

γ0ζ
∗2 < K(ζ∗/ξ)2 + K(k0ξ)(ζ

∗/ξ)4. (4.20)

Because both the work by the pressure (i.e. the left-hand side) 
and the bending energy are proportional to ζ∗2 , it follows 
that bending energy can suppress bulging if K is significantly 
larger than γ0ξ

2. Because the suture energy has a different 
dependence on ζ∗, we will compare instead the work by the 
pressure and the suture energy for the case that ζ∗ = ξ. This 
is the point where the bulge could be expected to strain the 
capsid to the point that it weakens the local elastic response. 
The suture energy exceeds the pressure work if K is signifi-
cantly larger than γ0ξ/k0. If the size ξ of the weakened sec-
tion is large compared to the microscopic cutoff 1/k0 then the 
suture energy is much more effective in suppressing bulging 
than the bending energy.

Under what conditions would the suture energy be suffi-
ciently large to suppress bulging? Let λp be the persistence 
length of the presumed capsid protein chains. The bending 
modulus K can be expressed in terms of this persistence length 
as kBT(k0λp). Let P be the osmotic pressures of the archaeal 
virus. Then γ0 � PR. In terms of these quantities, the stability 
condition is that kBT(k0λp) must exceed PRξ/k0. The max-
imum osmotic pressure that a smectic capsid could withstand 
is thus

Pmax ∼ kBTk2
0λp/(Rξ).

Assume a capsid with a size in the range of 50–100 
nanometers (nm) has a defected region with a size in the 
range of 10 nm. Next assume a filament peristence length λp 
in the range of one micron and assume a microscopic cutoff 
1/k0—the size of a capsid protein—in the range of nanometer. 
For these values, the maximum pressure the smectic caspid 
could withstand would be in the range of 10 atmospheres. 
This is comparable to the osmotic pressure inside conven-
tional phage viruses, which suggests that smectic capsids 
indeed could withstand significant osmotic pressures. Note 
that increasing the stiffness of the polymer chains in order to 
increase the maximum pressure would have the (undesired) 
effect of freezing the protein array. This is undesired because 
large shape changes would be inhibited. More definite esti-
mates have to await measurement of the persistence length 
of the capsid protein chains of the archaeal viruses (if any). 
It certainly would be interesting if synthetic smectic capsids 
composed polymerizing chiral proteins could be fabricated in 
which case the persistence length would be known.
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